Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.296
1.
PLoS One ; 19(5): e0302375, 2024.
Article En | MEDLINE | ID: mdl-38701103

There are numerous reports of enhanced or emerged visual arts abilities in patients with semantic impairment. These reports led to the theory that a loss of function on the language side of the brain can result in changes of ability to draw and/or to paint. Further, the left posterior middle temporal gyrus (l-pMTG) has been revealed to contribute to the higher control semantic mechanisms with objects recognition and integration of visual information, within a widely distributed network of the left hemisphere. Nevertheless, the theory has not been fully studied in neural bases. The aim of this study is to examine role of the l-pMTG on shape recognition and its reconstruction within drawing behavior, by using a combining method of the repetitive transcranial magnetic stimulation (rTMS) and functional near-infrared spectroscopy (fNIRS). Eighteen healthy participants received a low frequency inhibitory rTMS to their l-pMTG during the drawing task of the Benton Visual Retention Test (BVRT). There was a significant decrease of the mean accuracy of reproductions in the Complex designs of the BVRT, compared to the Simple and Medium designs. The fNIRS data showed strong negative correlations with the results of the BVRT. Though our hypothesis had a contradiction that rTMS would have inhibited the brain activity in the stimulated site, the results suggest that shape recognition and its reconstruction such as the BVRT require neural activations of the l-TL as well as that of the l-pMTG.


Spectroscopy, Near-Infrared , Temporal Lobe , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Temporal Lobe/physiology , Temporal Lobe/diagnostic imaging , Spectroscopy, Near-Infrared/methods , Male , Female , Adult , Young Adult , Pattern Recognition, Visual/physiology , Brain Mapping/methods
2.
Atten Percept Psychophys ; 86(4): 1259-1286, 2024 May.
Article En | MEDLINE | ID: mdl-38691237

Conflict-induced control refers to humans' ability to regulate attention in the processing of target information (e.g., the color of a word in the color-word Stroop task) based on experience with conflict created by distracting information (e.g., an incongruent color word), and to do so either in a proactive (preparatory) or a reactive (stimulus-driven) fashion. Interest in conflict-induced control has grown recently, as has the awareness that effects attributed to those processes might be affected by conflict-unrelated processes (e.g., the learning of stimulus-response associations). This awareness has resulted in the recommendation to move away from traditional interference paradigms with small stimulus/response sets and towards paradigms with larger sets (at least four targets, distractors, and responses), paradigms that allow better control of non-conflict processes. Using larger sets, however, is not always feasible. Doing so in the Stroop task, for example, would require either multiple arbitrary responses that are difficult for participants to learn (e.g., manual responses to colors) or non-arbitrary responses that can be difficult for researchers to collect (e.g., vocal responses in online experiments). Here, we present a spatial version of the Stroop task that solves many of those problems. In this task, participants respond to one of six directions indicated by an arrow, each requiring a specific, non-arbitrary manual response, while ignoring the location where the arrow is displayed. We illustrate the usefulness of this task by showing the results of two experiments in which evidence for proactive and reactive control was obtained while controlling for the impact of non-conflict processes.


Attention , Color Perception , Conflict, Psychological , Reaction Time , Stroop Test , Humans , Male , Female , Young Adult , Orientation , Adult , Pattern Recognition, Visual/physiology , Executive Function/physiology , Awareness , Adolescent
3.
Hum Brain Mapp ; 45(7): e26703, 2024 May.
Article En | MEDLINE | ID: mdl-38716714

The default mode network (DMN) lies towards the heteromodal end of the principal gradient of intrinsic connectivity, maximally separated from the sensory-motor cortex. It supports memory-based cognition, including the capacity to retrieve conceptual and evaluative information from sensory inputs, and to generate meaningful states internally; however, the functional organisation of DMN that can support these distinct modes of retrieval remains unclear. We used fMRI to examine whether activation within subsystems of DMN differed as a function of retrieval demands, or the type of association to be retrieved, or both. In a picture association task, participants retrieved semantic associations that were either contextual or emotional in nature. Participants were asked to avoid generating episodic associations. In the generate phase, these associations were retrieved from a novel picture, while in the switch phase, participants retrieved a new association for the same image. Semantic context and emotion trials were associated with dissociable DMN subnetworks, indicating that a key dimension of DMN organisation relates to the type of association being accessed. The frontotemporal and medial temporal DMN showed a preference for emotional and semantic contextual associations, respectively. Relative to the generate phase, the switch phase recruited clusters closer to the heteromodal apex of the principal gradient-a cortical hierarchy separating unimodal and heteromodal regions. There were no differences in this effect between association types. Instead, memory switching was associated with a distinct subnetwork associated with controlled internal cognition. These findings delineate distinct patterns of DMN recruitment for different kinds of associations yet common responses across tasks that reflect retrieval demands.


Default Mode Network , Emotions , Magnetic Resonance Imaging , Mental Recall , Semantics , Humans , Male , Female , Adult , Young Adult , Emotions/physiology , Default Mode Network/physiology , Default Mode Network/diagnostic imaging , Mental Recall/physiology , Cerebral Cortex/physiology , Cerebral Cortex/diagnostic imaging , Nerve Net/physiology , Nerve Net/diagnostic imaging , Brain Mapping , Pattern Recognition, Visual/physiology
4.
Sci Rep ; 14(1): 10040, 2024 05 02.
Article En | MEDLINE | ID: mdl-38693189

Investigation of visual illusions helps us understand how we process visual information. For example, face pareidolia, the misperception of illusory faces in objects, could be used to understand how we process real faces. However, it remains unclear whether this illusion emerges from errors in face detection or from slower, cognitive processes. Here, our logic is straightforward; if examples of face pareidolia activate the mechanisms that rapidly detect faces in visual environments, then participants will look at objects more quickly when the objects also contain illusory faces. To test this hypothesis, we sampled continuous eye movements during a fast saccadic choice task-participants were required to select either faces or food items. During this task, pairs of stimuli were positioned close to the initial fixation point or further away, in the periphery. As expected, the participants were faster to look at face targets than food targets. Importantly, we also discovered an advantage for food items with illusory faces but, this advantage was limited to the peripheral condition. These findings are among the first to demonstrate that the face pareidolia illusion persists in the periphery and, thus, it is likely to be a consequence of erroneous face detection.


Illusions , Humans , Female , Male , Adult , Illusions/physiology , Young Adult , Visual Perception/physiology , Photic Stimulation , Face/physiology , Facial Recognition/physiology , Eye Movements/physiology , Pattern Recognition, Visual/physiology
5.
Hum Brain Mapp ; 45(7): e26690, 2024 May.
Article En | MEDLINE | ID: mdl-38703117

One potential application of forensic "brain reading" is to test whether a suspect has previously experienced a crime scene. Here, we investigated whether it is possible to decode real life autobiographic exposure to spatial locations using fMRI. In the first session, participants visited four out of eight possible rooms on a university campus. During a subsequent scanning session, subjects passively viewed pictures and videos from these eight possible rooms (four old, four novel) without giving any responses. A multivariate searchlight analysis was employed that trained a classifier to distinguish between "seen" versus "unseen" stimuli from a subset of six rooms. We found that bilateral precuneus encoded information that can be used to distinguish between previously seen and unseen rooms and that also generalized to the two stimuli left out from training. We conclude that activity in bilateral precuneus is associated with the memory of previously visited rooms, irrespective of the identity of the room, thus supporting a parietal contribution to episodic memory for spatial locations. Importantly, we could decode whether a room was visited in real life without the need of explicit judgments about the rooms. This suggests that recognition is an automatic response that can be decoded from fMRI data, thus potentially supporting forensic applications of concealed information tests for crime scene recognition.


Brain Mapping , Magnetic Resonance Imaging , Parietal Lobe , Recognition, Psychology , Humans , Male , Female , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Young Adult , Recognition, Psychology/physiology , Brain Mapping/methods , Adult , Photic Stimulation/methods , Pattern Recognition, Visual/physiology , Space Perception/physiology , Memory, Episodic
6.
J Exp Psychol Hum Percept Perform ; 50(6): 605-625, 2024 Jun.
Article En | MEDLINE | ID: mdl-38573695

Object-based warping is a visual illusion in which dots appear farther apart from each other when superimposed on an object. Previous research found that the illusion's strength varies with the perceived objecthood of the display. We tested whether objecthood alone determines the strength of the visual illusion or if low-level factors separable from objecthood also play a role. In Experiments 1-2, we varied low-level features to assess their impact on the warping illusion. We found that the warping illusion is equally strong for a variety of shapes but varies with the elements by which shape is defined. Shapes composed of continuous edges produced larger warping effects than shapes defined by disconnected elements. In Experiment 3, we varied a display's objecthood while holding low-level features constant. Displays with matched low-level features produced warping effects of the same size even when the perceived unity of the elements in the display varied. In Experiments 4-6, we tested whether displays with low-level features predicted to be important in spatial warping produced the visual illusion even when the display weakly configured into a single object. Results showed that the presence of low-level features like contour solidity and convexity determined warping effect sizes over and above what could be accounted for by the display's perceived objecthood. Our findings challenge the view that the spatial warping illusion is solely object-based. Other factors like the solidity of contours and contours' position relative to reference dots appear to play separate and important roles in determining warping effect sizes. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Form Perception , Optical Illusions , Pattern Recognition, Visual , Humans , Adult , Young Adult , Pattern Recognition, Visual/physiology , Optical Illusions/physiology , Form Perception/physiology , Male , Female , Space Perception/physiology
7.
J Exp Psychol Hum Percept Perform ; 50(6): 636-653, 2024 Jun.
Article En | MEDLINE | ID: mdl-38619486

We examined whether proactive suppression can be applied on demand. A prompt cue indicated the to-be-ignored distractor color for each trial. Participants needed to use this cue to know which of two target shapes to respond to. To assess proactive suppression of the cued distractor color, we presented a probe letter recall task on a minority (25%) of the trials. A letter appeared inside each of the six shapes of the search array and participants recalled as many letters as they could. When the to-be-ignored color was fixed in Experiment 1, probe recall accuracy was lower for probe letters inside to-be-ignored-color distractors than target-color distractors, known as the probe suppression effect. However, when the prompted to-be-ignored color varied from trial to trial, the probe suppression effect disappeared, regardless of whether the prompt was a colored circle (Experiment 2) or a colored word (Experiment 3). Experiment 4 tested the search and destroy hypothesis by shortening the search display duration from 200 to 50 ms. No capture effect by the to-be-ignored color was evident, suggesting that participants did not first search for the to-be-ignored color, prior to suppressing it. We conclude that when rejection of a distractor color is required on demand, one cannot accomplish such suppression proactively but instead must deal with the distractor reactively, incurring a large cost in performance. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Attention , Color Perception , Mental Recall , Pattern Recognition, Visual , Humans , Young Adult , Adult , Female , Color Perception/physiology , Pattern Recognition, Visual/physiology , Mental Recall/physiology , Male , Attention/physiology , Cues , Proactive Inhibition , Psychomotor Performance/physiology
8.
Atten Percept Psychophys ; 86(4): 1400-1416, 2024 May.
Article En | MEDLINE | ID: mdl-38557941

Music training is associated with better beat processing in the auditory modality. However, it is unknown how rhythmic training that emphasizes visual rhythms, such as dance training, might affect beat processing, nor whether training effects in general are modality specific. Here we examined how music and dance training interacted with modality during audiovisual integration and synchronization to auditory and visual isochronous sequences. In two experiments, musicians, dancers, and controls completed an audiovisual integration task and an audiovisual target-distractor synchronization task using dynamic visual stimuli (a bouncing figure). The groups performed similarly on the audiovisual integration tasks (Experiments 1 and 2). However, in the finger-tapping synchronization task (Experiment 1), musicians were more influenced by auditory distractors when synchronizing to visual sequences, while dancers were more influenced by visual distractors when synchronizing to auditory sequences. When participants synchronized with whole-body movements instead of finger-tapping (Experiment 2), all groups were more influenced by the visual distractor than the auditory distractor. Taken together, this study highlights how training is associated with audiovisual processing, and how different types of visual rhythmic stimuli and different movements alter beat perception and production outcome measures. Implications for the modality appropriateness hypothesis are discussed.


Attention , Dancing , Music , Psychomotor Performance , Humans , Dancing/psychology , Female , Male , Young Adult , Attention/physiology , Psychomotor Performance/physiology , Adult , Auditory Perception/physiology , Time Perception , Practice, Psychological , Pattern Recognition, Visual/physiology , Adolescent , Visual Perception/physiology , Reaction Time
9.
Atten Percept Psychophys ; 86(4): 1342-1359, 2024 May.
Article En | MEDLINE | ID: mdl-38561567

Atypical orienting of visuospatial attention in autistic individuals or individuals with a high level of autistic-like traits (ALTs) has been well documented and viewed as a core feature underlying the development of autism. However, there has been limited testing of three alternative theoretical positions advanced to explain atypical orienting - difficulty in disengagement, cue indifference, and delay in orienting. Moreover, research commonly has not separated facilitation (reaction time difference between neutral and valid cues) and cost effects (reaction time difference between invalid and neutral cues) in orienting tasks. We addressed these limitations in two experiments that compared groups selected for Low- and High-ALT levels on exogenous and endogenous versions of the Posner cueing paradigm. Experiment 1 showed that High-ALT participants exhibited a significantly reduced cost effect compared to Low-ALT participants in the endogenous cueing task, although the overall orienting effect remained small. In Experiment 2, we increased task difficulty of the endogenous task to augment cueing effects. Results were comparable to Experiment 1 regarding the finding of a reduced cost effect for High-ALT participants on the endogenous cueing task and additionally demonstrated a reduced facilitation effect in High-ALT participants on the same task. No ALT group differences were observed on an exogenous cueing task included in Experiment 2. These findings suggest atypical orienting in High-ALT individuals may be attributable to general cue indifference, which implicates differences in top-down attentional processes between Low- and High-ALT individuals. We discuss how indifference to endogenous cues may contribute to social cognitive differences in autism.


Attention , Autistic Disorder , Cues , Reaction Time , Humans , Male , Female , Attention/physiology , Young Adult , Autistic Disorder/psychology , Space Perception/physiology , Adult , Adolescent , Orientation , Pattern Recognition, Visual/physiology
10.
Atten Percept Psychophys ; 86(4): 1318-1329, 2024 May.
Article En | MEDLINE | ID: mdl-38594445

Competing theories attempt to explain what guides eye movements when exploring natural scenes: bottom-up image salience and top-down semantic salience. In one study, we apply language-based analyses to quantify the well-known observation that task influences gaze in natural scenes. Subjects viewed ten scenes as if they were performing one of two tasks. We found that the semantic similarity between the task and the labels of objects in the scenes captured the task-dependence of gaze (t(39) = 13.083; p < 0.001). In another study, we examined whether image salience or semantic salience better predicts gaze during a search task, and if viewing strategies are affected by searching for targets of high or low semantic relevance to the scene. Subjects searched 100 scenes for a high- or low-relevance object. We found that image salience becomes a worse predictor of gaze across successive fixations, while semantic salience remains a consistent predictor (X2(1, N=40) = 75.148, p < .001). Furthermore, we found that semantic salience decreased as object relevance decreased (t(39) = 2.304; p = .027). These results suggest that semantic salience is a useful predictor of gaze during task-related scene viewing, and that even in target-absent trials, gaze is modulated by the relevance of a search target to the scene in which it might be located.


Attention , Fixation, Ocular , Semantics , Humans , Fixation, Ocular/physiology , Attention/physiology , Male , Female , Young Adult , Adult , Pattern Recognition, Visual/physiology , Eye Movements/physiology
11.
Atten Percept Psychophys ; 86(4): 1120-1147, 2024 May.
Article En | MEDLINE | ID: mdl-38627277

Visually searching for a frequently changing target is assumed to be guided by flexible working memory representations of specific features necessary to discriminate targets from distractors. Here, we tested if these representations allow selective suppression or always facilitate perception based on search goals. Participants searched for a target (i.e., a horizontal bar) defined by one of two different negative features (e.g., not red vs. not blue; Experiment 1) or a positive (e.g., blue) versus a negative feature (Experiments 2 and 3). A prompt informed participants about the target identity, and search tasks alternated or repeated randomly. We used different peripheral singleton cues presented at the same (valid condition) or a different (invalid condition) position as the target to examine if negative features were suppressed depending on current instructions. In all experiments, cues with negative features elicited slower search times in valid than invalid trials, indicating suppression. Additionally, suppression of negative color cues tended to be selective when participants searched for the target by different negative features but generalized to negative and non-matching cue colors when switching between positive and negative search criteria was required. Nevertheless, when the same color - red - was used in positive and negative search tasks, red cues captured attention or were suppressed depending on whether red was positive or negative (Experiment 3). Our results suggest that working memory representations flexibly trigger suppression or attentional capture contingent on a task-relevant feature's functional meaning during visual search, but top-down suppression operates at different levels of specificity depending on current task demands.


Attention , Color Perception , Cues , Goals , Memory, Short-Term , Orientation , Pattern Recognition, Visual , Reaction Time , Humans , Pattern Recognition, Visual/physiology , Male , Female , Young Adult , Adult , Inhibition, Psychological , Discrimination, Psychological
12.
Atten Percept Psychophys ; 86(4): 1067-1074, 2024 May.
Article En | MEDLINE | ID: mdl-38639857

The link between various codes of magnitude and their interactions has been studied extensively for many years. In the current study, we examined how the physical and numerical magnitudes of digits are mapped into a combined mental representation. In two psychophysical experiments, participants reported the physically larger digit among two digits. In the identical condition, participants compared digits of an identical value (e.g., "2" and "2"); in the different condition, participants compared digits of distinct numerical values (i.e., "2" and "5"). As anticipated, participants overestimated the physical size of a numerically larger digit and underestimated the physical size of a numerically smaller digit. Our results extend the shared-representation account of physical and numerical magnitudes.


Judgment , Pattern Recognition, Visual , Size Perception , Humans , Pattern Recognition, Visual/physiology , Male , Female , Young Adult , Psychophysics , Adult , Attention , Discrimination, Psychological
13.
Atten Percept Psychophys ; 86(4): 1163-1175, 2024 May.
Article En | MEDLINE | ID: mdl-38658517

People tend to employ suboptimal attention control strategies during visual search. Here we question why people are suboptimal, specifically investigating how knowledge of the optimal strategies and the time available to apply such strategies affect strategy use. We used the Adaptive Choice Visual Search (ACVS), a task designed to assess attentional control optimality. We used explicit strategy instructions to manipulate explicit strategy knowledge, and we used display previews to manipulate time to apply the strategies. In the first two experiments, the strategy instructions increased optimality. However, the preview manipulation did not significantly boost optimality for participants who did not receive strategy instruction. Finally, in Experiments 3A and 3B, we jointly manipulated preview and instruction with a larger sample size. Preview and instruction both produced significant main effects; furthermore, they interacted significantly, such that the beneficial effect of instructions emerged with greater preview time. Taken together, these results have important implications for understanding the strategic use of attentional control. Individuals with explicit knowledge of the optimal strategy are more likely to exploit relevant information in their visual environment, but only to the extent that they have the time to do so.


Attention , Pattern Recognition, Visual , Reaction Time , Humans , Pattern Recognition, Visual/physiology , Orientation , Choice Behavior , Young Adult , Female , Male
14.
Behav Brain Funct ; 20(1): 8, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637870

One important role of the TPJ is the contribution to perception of the global gist in hierarchically organized stimuli where individual elements create a global visual percept. However, the link between clinical findings in simultanagnosia and neuroimaging in healthy subjects is missing for real-world global stimuli, like visual scenes. It is well-known that hierarchical, global stimuli activate TPJ regions and that simultanagnosia patients show deficits during the recognition of hierarchical stimuli and real-world visual scenes. However, the role of the TPJ in real-world scene processing is entirely unexplored. In the present study, we first localized TPJ regions significantly responding to the global gist of hierarchical stimuli and then investigated the responses to visual scenes, as well as single objects and faces as control stimuli. All three stimulus classes evoked significantly positive univariate responses in the previously localized TPJ regions. In a multivariate analysis, we were able to demonstrate that voxel patterns of the TPJ were classified significantly above chance level for all three stimulus classes. These results demonstrate a significant involvement of the TPJ in processing of complex visual stimuli that is not restricted to visual scenes and that the TPJ is sensitive to different classes of visual stimuli with a specific signature of neuronal activations.


Magnetic Resonance Imaging , Parietal Lobe , Humans , Parietal Lobe/physiology , Recognition, Psychology , Neuroimaging , Multivariate Analysis , Photic Stimulation , Pattern Recognition, Visual/physiology , Visual Perception/physiology , Brain Mapping/methods
15.
Cereb Cortex ; 34(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38679483

Prior research has yet to fully elucidate the impact of varying relative saliency between target and distractor on attentional capture and suppression, along with their underlying neural mechanisms, especially when social (e.g. face) and perceptual (e.g. color) information interchangeably serve as singleton targets or distractors, competing for attention in a search array. Here, we employed an additional singleton paradigm to investigate the effects of relative saliency on attentional capture (as assessed by N2pc) and suppression (as assessed by PD) of color or face singleton distractors in a visual search task by recording event-related potentials. We found that face singleton distractors with higher relative saliency induced stronger attentional processing. Furthermore, enhancing the physical salience of colors using a bold color ring could enhance attentional processing toward color singleton distractors. Reducing the physical salience of facial stimuli by blurring weakened attentional processing toward face singleton distractors; however, blurring enhanced attentional processing toward color singleton distractors because of the change in relative saliency. In conclusion, the attentional processes of singleton distractors are affected by their relative saliency to singleton targets, with higher relative saliency of singleton distractors resulting in stronger attentional capture and suppression; faces, however, exhibit some specificity in attentional capture and suppression due to high social saliency.


Attention , Color Perception , Electroencephalography , Evoked Potentials , Humans , Attention/physiology , Female , Male , Young Adult , Evoked Potentials/physiology , Adult , Color Perception/physiology , Photic Stimulation/methods , Facial Recognition/physiology , Pattern Recognition, Visual/physiology , Brain/physiology
16.
Nat Commun ; 15(1): 3407, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649694

The perception and neural processing of sensory information are strongly influenced by prior expectations. The integration of prior and sensory information can manifest through distinct underlying mechanisms: focusing on unexpected input, denoted as prediction error (PE) processing, or amplifying anticipated information via sharpened representation. In this study, we employed computational modeling using deep neural networks combined with representational similarity analyses of fMRI data to investigate these two processes during face perception. Participants were cued to see face images, some generated by morphing two faces, leading to ambiguity in face identity. We show that expected faces were identified faster and perception of ambiguous faces was shifted towards priors. Multivariate analyses uncovered evidence for PE processing across and beyond the face-processing hierarchy from the occipital face area (OFA), via the fusiform face area, to the anterior temporal lobe, and suggest sharpened representations in the OFA. Our findings support the proposition that the brain represents faces grounded in prior expectations.


Brain Mapping , Facial Recognition , Magnetic Resonance Imaging , Humans , Male , Female , Adult , Young Adult , Facial Recognition/physiology , Brain/physiology , Brain/diagnostic imaging , Temporal Lobe/physiology , Temporal Lobe/diagnostic imaging , Face , Photic Stimulation , Neural Networks, Computer , Occipital Lobe/physiology , Occipital Lobe/diagnostic imaging , Pattern Recognition, Visual/physiology , Visual Perception/physiology
17.
J Vis ; 24(4): 20, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38656530

We obtain large amounts of external information through our eyes, a process often considered analogous to picture mapping onto a camera lens. However, our eyes are never as still as a camera lens, with saccades occurring between fixations and microsaccades occurring within a fixation. Although saccades are agreed to be functional for information sampling in visual perception, it remains unknown if microsaccades have a similar function when eye movement is restricted. Here, we demonstrated that saccades and microsaccades share common spatiotemporal structures in viewing visual objects. Twenty-seven adults viewed faces and houses in free-viewing and fixation-controlled conditions. Both saccades and microsaccades showed distinctive spatiotemporal patterns between face and house viewing that could be discriminated by pattern classifications. The classifications based on saccades and microsaccades could also be mutually generalized. Importantly, individuals who showed more distinctive saccadic patterns between faces and houses also showed more distinctive microsaccadic patterns. Moreover, saccades and microsaccades showed a higher structure similarity for face viewing than house viewing and a common orienting preference for the eye region over the mouth region. These findings suggested a common oculomotor program that is used to optimize information sampling during visual object perception.


Fixation, Ocular , Saccades , Visual Perception , Humans , Saccades/physiology , Male , Female , Adult , Fixation, Ocular/physiology , Young Adult , Visual Perception/physiology , Photic Stimulation/methods , Pattern Recognition, Visual/physiology
18.
Neural Netw ; 175: 106318, 2024 Jul.
Article En | MEDLINE | ID: mdl-38643618

How does the brain process natural visual stimuli to make a decision? Imagine driving through fog. An object looms ahead. What do you do? This decision requires not only identifying the object but also choosing an action based on your decision confidence. In this circumstance, confidence is making a bridge between seeing and believing. Our study unveils how the brain processes visual information to make such decisions with an assessment of confidence, using a model inspired by the visual cortex. To computationally model the process, this study uses a spiking neural network inspired by the hierarchy of the visual cortex in mammals to investigate the dynamics of feedforward object recognition and decision-making in the brain. The model consists of two modules: a temporal dynamic object representation module and an attractor neural network-based decision-making module. Unlike traditional models, ours captures the evolution of evidence within the visual cortex, mimicking how confidence forms in the brain. This offers a more biologically plausible approach to decision-making when encountering real-world stimuli. We conducted experiments using natural stimuli and measured accuracy, reaction time, and confidence. The model's estimated confidence aligns remarkably well with human-reported confidence. Furthermore, the model can simulate the human change-of-mind phenomenon, reflecting the ongoing evaluation of evidence in the brain. Also, this finding offers decision-making and confidence encoding share the same neural circuit.


Decision Making , Models, Neurological , Neural Networks, Computer , Visual Cortex , Decision Making/physiology , Humans , Visual Cortex/physiology , Recognition, Psychology/physiology , Reaction Time/physiology , Computer Simulation , Visual Perception/physiology , Photic Stimulation/methods , Pattern Recognition, Visual/physiology
19.
Vision Res ; 219: 108401, 2024 Jun.
Article En | MEDLINE | ID: mdl-38569223

Interocular grouping during binocular rivalry occurs when two images presented to each eye combine into a coherent pattern. The experience of interocular grouping is thought to be influenced by both eye-of-origin, which involves excitatory lateral connections among monocular neurons, and pattern coherence, which results from top-down intervention from higher visual areas. However, it remains unclear which factor plays a more significant role in the interocularly-grouped percepts during binocular rivalry. The current study employed an individual difference approach to investigate whether grouping dynamics are mainly determined by eye-of-origin or pattern coherence. We found that participants who perceived interocularly-driven coherent percepts for a longer duration also tended to experience longer periods of monocularly-driven coherent percepts. In contrast, participants who experienced non-coherent piecemeal percepts for an extended duration in conventional rivalry also had longer duration of non-coherent percepts in the interocular coherence setting. This individual differences in experiencing interocular grouping suggest that pattern coherence exerts a stronger influence on grouping dynamics during binocular rivalry compared to eye-of-origin factors.


Vision Disparity , Vision, Binocular , Humans , Vision, Binocular/physiology , Male , Female , Vision Disparity/physiology , Adult , Young Adult , Individuality , Photic Stimulation/methods , Pattern Recognition, Visual/physiology
20.
Vision Res ; 219: 108394, 2024 Jun.
Article En | MEDLINE | ID: mdl-38579407

Contour Integration (CI) is the ability to integrate elemental features into objects and is a basic visual process essential for object perception and recognition, and for functioning in visual environments. It is now well documented that people with schizophrenia (SZ), in addition to having cognitive impairments, also have several visual perceptual deficits, including in CI. Here, we retrospectively characterize the performance of both SZ and neurotypical individuals (NT) on a series of contour shapes, made up of Gabor elements, that varied in terms of closure and curvature. Participants in both groups performed a CI training task that included 7 different families of shapes (Lines, Ellipse, Blobs, Squiggles, Spiral, Circle and Letters) for up to 40 sessions. Two parameters were manipulated in the training task: Orientation Jitter (OJ, i.e., orientation deviations of individual Gabor elements from ideal for each shape) and Inducer Number (IN, i.e., number of Gabor elements defining the shape). Results show that both OJ and IN thresholds significantly differed between the groups, with higher (OJ) and lower (IN) thresholds observed in the controls. Furthermore, we found significant effects as a function of the contour shapes, with differences between groups emerging with contours that were considered more complex, e.g., due to having a higher degree of curvature (Blobs, Spiral, Letters). These data can inform future work that aims to characterize visual integration impairments in schizophrenia.


Form Perception , Schizophrenia , Humans , Form Perception/physiology , Schizophrenia/physiopathology , Adult , Female , Male , Middle Aged , Retrospective Studies , Sensory Thresholds/physiology , Photic Stimulation/methods , Case-Control Studies , Pattern Recognition, Visual/physiology , Young Adult
...